An Asymptotically Optimal Window Selection Rule for Kernel Density Estimates

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal kernel selection for density estimation

We provide new general kernel selection rules thanks to penalized least-squares criteria. We derive optimal oracle inequalities using adequate concentration tools. We also investigate the problem of minimal penalty as described in [BM07].

متن کامل

Near-Optimal Coresets of Kernel Density Estimates

We construct near-optimal coresets for kernel density estimate for points in Rd when the kernel is positive definite. Specifically we show a polynomial time construction for a coreset of size O( √ d log(1/ε)/ε), and we show a near-matching lower bound of size Ω( √ d/ε). The upper bound is a polynomial in 1/ε improvement when d ∈ [3, 1/ε2) (for all kernels except the Gaussian kernel which had a ...

متن کامل

Asymptotically optimal configurations for Chebyshev constants with an integrable kernel

We show that if a lower-semicontinuous kernel K satisfies some mild additional hypotheses, then configurations that are asympotitically optimal for the extremal problems defining the Chebyshev constants are precisely those whose counting measures converge to the equilibrium measure for the corresponding minimum energy problem.

متن کامل

Fast optimal bandwidth selection for kernel density estimation

We propose a computationally efficient 2−exact approximation algorithm for univariate Gaussian kernel based density derivative estimation that reduces the computational complexity from O(MN) to linear O(N +M). We apply the procedure to estimate the optimal bandwidth for kernel density estimation. We demonstrate the speedup achieved on this problem using the ”solve-the-equation plug-in” method, ...

متن کامل

Optimal Heat Kernel Estimates

Sharp smoothing estimates are proven for magnetic Schrr odinger semigroups in two dimensions under the assumption that the magnetic eld is bounded below by some positive constant B 0. As a consequence the L 1 norm of the associated integral kernel is bounded by the L 1 norm of the Mehler kernel of the Schrr odinger semigroup with the constant magnetic eld B 0 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1984

ISSN: 0090-5364

DOI: 10.1214/aos/1176346792